Sol-Gel Prepared Sn-Al₂O₃ Catalysts for the Selective Reduction of NO with Propene

Masaaki Haneda,* Shin-ichi Ohzu,† Yoshiaki Kintaichi, Ken-ichi Shimizu,†† Junji Shibata,††† Hisao Yoshida, ††† and Hideaki Hamada

National Institute of Advanced Industrial Science and Technology(AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565

†Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510

††Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181

†††Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603

(Received April 19, 2001)

Catalytic reduction of NO by propene in the presence of oxygen was studied over Sn-Al₂O₃ prepared by the solgel method. The maximum NO conversion did not change much with Sn loading (1-5 wt%), although the effective temperature window for NO reduction shifted to lower temperatures with increasing Sn loading. X-ray diffraction (XRD), and X-ray absorption spectroscopy (XANES and EXAFS) revealed the formation of finely-divided SnO₂ crystallites in Sn-Al₂O₃. It was deduced that not only the surface vicinity of supported SnO₂, which can be reduced at lower temperatures, but also alumina participate in the reaction as catalytically active sites. The catalytic performance of Sn-Al₂O₃ was markedly improved by an H₂O treatment at 873 K. The H₂O treatment did not affect the crystal structure of the catalysts and the dispersion state of supported SnO₂, but promoted the removal of Cl⁻ ions, which originated from the SnCl₄ precursor. The activity enhancement by the H₂O treatment was accounted for by an increase in the surface SnO₂ concentration as active sites and by the modification of oxo-tin species as active sites. Reaction kinetic studies suggested that NO reduction on the fresh and the H₂O-treated catalysts proceeds through the same reaction pathway in which the surface NO_x adspecies and C₃H₆-derived species play an important role for NO reduction.

Selective catalytic reduction of nitrogen oxides (NO_x) in the presence of oxygen is a challenging subject of study. Since the first reports of NO reduction by hydrocarbons over Cu-ZSM-5 by Iwamoto et al.² and by Held et al.³ following patent literature, 4,5 many investigations have focused on zeolite-based catalysts.⁶⁻⁸ Although metal ion-exchanged zeolites showed excellent activity at high space velocities, their deactivation under hydrothermal conditions due to dealumination from the framework is a serious problem from a practical viewpoint.⁹

In addition to zeolite-based catalysts, metal oxide-based catalysts have also been found to catalyze this reaction. 10,11 Concerning single metal oxides, we first reported the catalytic performance of solid acid or base-type oxides, such as Al₂O₃, ZrO₂ and MgO.¹² Teraoka et al.¹³ also reported that SnO₂ showed good activity for NO reduction by hydrocarbons under the reaction conditions of low space velocities and relatively low O₂/hydrocarbon ratios. Generally, metal oxides can be characterized by high selectivity and stability, although their activity is relatively low compared with zeolites. Therefore, many studies have tried to enhance their catalytic activity.

The catalytic performance of metal (oxide) is often promoted by supporting it onto high surface area support. Tabata et al. 14 and Kung et al. 15,16 reported that the catalytic activity of Al₂O₃ for NO reduction by methanol and propene was considerably enhanced at low temperatures by the addition of SnO₂. Ma et al.¹⁷ also reported that SnO₂–ZrO₂ binary oxides showed good activity for NO reduction by propene. Such a positive effect of support would be accounted for by improved dispersion of SnO₂ induced by a strong interaction with the support. ¹⁸

In the present work, we investigated the catalytic performance of Sn-Al₂O₃ catalysts prepared by the sol-gel method, which is a useful method to prepare catalysts with highly dispersed species, 19,20 for the selective reduction of NO with propene. Several characterizations as well as kinetic studies were also made to probe the properties of supported tin species.

Experimental

1. Catalyst Preparation. Alumina and alumina-supported tin oxide catalysts were prepared by the sol-gel method. The aluminium boehmite sol was first prepared by the hydrolysis of aluminium(III) triisopropoxide in hot water (363 K) with a small amount of nitric acid. Then, a solution of tin(IV) chloride dissolved in ethylene glycol was added into the aluminium boehmite sol solution. In the case of Al₂O₃ alone, this procedure was excluded. After the sol solution was stirred at room temperature for 1 day, the solvents were removed by heating under reduced pressure, followed by drying at 383 K in an oven and calcination at 873 K for 5 h in flowing air. The catalyst samples including tin oxides are abbreviated as Sn(x)– Al_2O_3 , where "x" is the loading of tin changing from 1 to 10 wt% as Sn. Pure SnO and SnO2 powders were purchased from Wako Pure Chemical Industries.

- 2. Catalytic Reaction. (a) Activity Measurements. catalytic activity was measured by using a fixed-bed flow reactor. A feed gas mixture containing 880 ppm NO, 950 ppm C₃H₆, 9.3% oxygen and 0 or 9.1% H₂O diluted in helium as a balance gas was fed to 0.2 g of a catalyst at a rate of 66 cm³ min⁻¹ (W/F = 0.18 gs cm⁻³). H₂O was introduced into the reaction gas mixture with a micro pump. In this case, the feed-gas flow rate and the concentrations of the other gas components were fixed by controlling the helium flow rate. The reaction temperature was changed from 873 to 523 K with steps of 50 K. The analysis of the effluent gas was made with two gas chromatographs equipped with a Molecular Sieve 5A column (for the analysis of N₂ and CO) and a Porapak Q column (for that of N₂O, CO₂ and C₃H₆). The catalytic activity was evaluated in terms of NO conversion to N₂ and that of propene to CO_r (CO + CO_2). The formation of N_2O was found to be negligible in the present study.
- (b) Kinetic Studies. The reaction rate of N_2 and CO_x formation was evaluated by changing the catalyst weight from 0.03 to 0.1 g to obtain a conversion level of NO below 30%. The kinetic parameters were determined at 623 K by changing the concentrations of the reactants in the range of 180–1500 ppm for NO, 150–1900 ppm for C_3H_6 and 2–15% for O_2 . The total flow rate was 66 cm³ min⁻¹. The standard reaction gas contained 880 ppm NO, 950 ppm C_3H_6 and 9.3% O_2 . The activation energy was calculated at temperatures ranging from 623 to 723 K for the standard reaction gas.
- 3. Catalyst Characterization. The BET surface area of the catalysts was determined with a conventional flow apparatus (Micromeritics Flowsorb II) by nitrogen adsorption at 77 K. Elemental analysis was conducted by the inductively coupled plasma (ICP) method using a Shimadzu ICP-2000. The crystal structure of the catalysts was identified by X-ray diffraction (XRD) measurements with a Mac Science M18XHF²² using Cu $K\alpha$ radiation at 40 kV and 74 mA. The local structures around Sn ions were studied by measuring the Sn K-edge X-ray absorption spectra at BL-10B of the Photon Factory in High-Energy Accelerator Research Organization with a ring energy of 2.5 GeV and a stored current of 250–350 mA. The spectra were recorded in a transmission mode at room temperature with a Si(311) channel cut monochromator.

Temperature-programmed reduction (TPR) measurements were carried out in the same manner as described elsewhere. After 0.05 g of a catalyst was pretreated in flowing air at 873 K for 1 h prior to TPR measurements, a 10 vol% H_2 –Ar gas mixture was used as a reducing gas with a flow rate of 30 cm³ min $^{-1}$; the temperature of the catalyst bed was raised at a heating rate of 5 K min $^{-1}$. Reduction of CuO to metallic copper was used to calibrate the TPR apparatus for H_2 consumption.

Results and Discussion

1. Catalytic Activity of $Sn-Al_2O_3$. Figure 1 shows the catalytic activity of $Sn-Al_2O_3$ with different Sn loadings for Sn reduction by propene in the absence of Sn along with that of Sn and Sn and Sn and Sn are flectively catalyzed this reaction at temperatures of around 773–873 K. Sn also served as a catalyst for this reaction at lower temperatures. Obviously, the addition of tin oxide into Sn by the sol–gel method caused a considerable enhancement of Sn conversion, although no great difference in Sn and Sn are observed. It was also found that the effective Sn and Sn are Sn and Sn are observed. It was also found that the

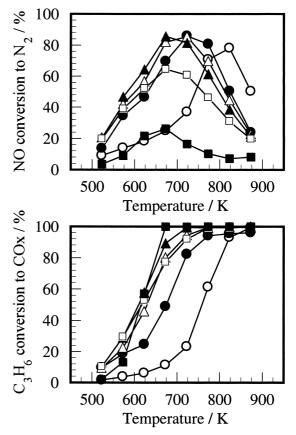


Fig. 1. Effect of Sn loading on the catalytic activity of Sn–Al₂O₃ for NO reduction by propene in the absence of H₂O. Conditions: NO = 880 ppm, C₃H₆ = 950 ppm, O₂ = 9.3%, H₂O = 0%, W/F = 0.18 gs cm⁻³. (\bigcirc) Al₂O₃, (\bigcirc) Sn(1)–Al₂O₃, (\triangle) Sn(3)–Al₂O₃, (\triangle) Sn(5)–Al₂O₃, (\square) Sn(10)–Al₂O₃, (\square) SnO₂.

tive temperatures for NO reduction on Sn–Al₂O₃ were almost the same as those on SnO₂. These results suggest that the supported tin oxide plays an important role as catalytically active sites.

Figure 2 shows the effect of H_2O on the activity of $Sn-Al_2O_3$. Coexisting H_2O caused a considerable decrease in the activity of Al_2O_3 and SnO_2 . On the other hand, $Sn-Al_2O_3$ still showed relatively high catalytic activity even in the presence of H_2O . No great change in the maximum NO conversion by coexisting H_2O was observed. However, the effective temperature window shifted to 50-100~K in the higher temperature region. It is noteworthy that $Sn(3)-Al_2O_3$ and $Sn(5)-Al_2O_3$ showed very similar catalytic performance irrespective of H_2O . The optimum Sn loading seems to be 1-5~Wt%.

2. Structural Analysis Table 1 summarizes the physical properties of the catalysts used in this study. The BET surface area of Sn–Al₂O₃ increased along with an increase in Sn loading up to 10 wt%. Elemental analysis revealed that the loading of Sn is close to the calculated value. It should be pointed out that certain amount of Cl⁻ ions, originating from SnCl₄ as the tin precursor, remains even after calcination at 873 K. Figure 3 shows XRD patterns of Sn–Al₂O₃ with different Sn loadings. No diffraction peaks assigned to tin compounds were detected for all of the Sn–Al₂O₃ samples. In addition, a shift in the

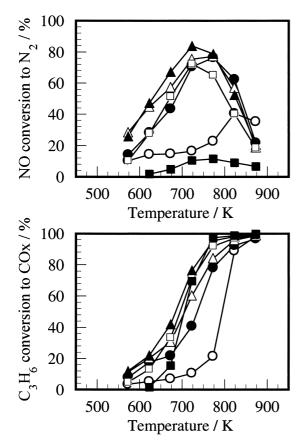


Fig. 2. Effect of H_2O on the catalytic activity of $Sn-Al_2O_3$ with different Sn loading for NO reduction by propene. Conditions: NO=880 ppm, $C_3H_6=950$ ppm, $O_2=9.3\%$, $H_2O=9.1\%$, W/F=0.18 gs cm⁻³. (\bigcirc) Al_2O_3 , (\bigcirc) $Sn(1)-Al_2O_3$, (\triangle) $Sn(3)-Al_2O_3$, (\triangle) $Sn(5)-Al_2O_3$, (\square) $Sn(10)-Al_2O_3$, (\square) SnO_2 .

Table 1. Physical Properties of the Catalysts Prepared

Catalyst	BET surface	Elemental analysis	
	area/m 2 g $^{-1}$	Sn/Al ^{a)}	Cl/Al
Al ₂ O ₃	167	na	na
SnO	20	na	na
SnO_2	25	na	na
$Sn(1)$ – Al_2O_3	205	na	na
$Sn(3)$ – Al_2O_3	236	0.014 (0.013)	0.011
$Sn(5)$ – Al_2O_3	231	0.020 (0.023)	0.011
$Sn(10)$ – Al_2O_3	267	0.048 (0.048)	0.020

na: not available.

a) In parentheses are given calculated atomic ratio.

XRD peaks ascribed to γ -Al₂O₃ was not recognized. These results suggest the presence of highly dispersed tin species on Al₂O₃.

In order to obtain information on the local structures around Sn ions, X-ray absorption measurements were performed. Figure 4A shows Sn K-edge XANES (X-ray absorption near edge structures) spectra of Sn–Al₂O₃ together with that of pure SnO and SnO₂ as reference samples. The XANES spectra of Sn–Al₂O₃ were very similar to that of SnO₂, indicating that Sn is present in the +4 oxidation state irrespective of Sn loading.

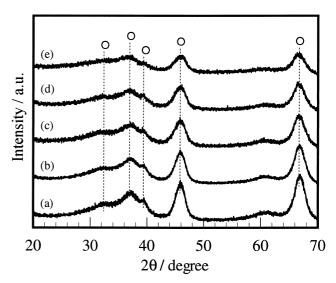


Fig. 3. XRD patterns of (a) Al_2O_3 , (b) Sn(1)– Al_2O_3 , (c) Sn(3)– Al_2O_3 , (d) Sn(5)– Al_2O_3 and (e) Sn(10)– Al_2O_3 , (\bigcirc) for γ - Al_2O_3 .

Fourier transforms of the k^3 -weighted EXAFS (extended X-ray absorption fine structure) spectra, phase-shift uncorrected, of $Sn-Al_2O_3$ along with that of pure SnO and SnO_2 are shown in Fig. 4B. Two distinct peaks ascribed to Sn-O (2.05 Å)²² and Sn-Sn $(3.71 \text{ Å})^{22}$ bondings were observed in the Fourier transforms of the EXAFS spectrum of SnO₂. Obviously, the position of Sn-O bonding of all the Sn-Al₂O₃ samples was the same as that of pure SnO2, while the second peak ascribed to Sn-Sn was not detected. These facts suggest the presence of finely-divided SnO₂ crystallites (abbreviated as "oxo-tin species") in the Sn-Al₂O₃ samples. The formation of "oxo-tin species" would be a feature of the sol-gel method employed here. Namely, an atomic-scale dispersion of Sn ions on the surface of fibrillar pseudo-boehmite sols with a length of 100 nm and a thickness of 10 nm^{23,24} are expected in the dried gels, leading to the formation of Al-O-Sn bondings. Below 10 wt% Sn loading, tin oxides were estimated to be dispersed with a monolayer. Thus, the atomic-scale dispersion of Sn ions in the dried gels presumably resulted in the formation of tiny SnO₂ crystallites with a cluster size.

H₂-TPR experiments were carried out to clarify the nature of oxo-tin species. Figure 5 shows the TPR spectra of Sn-Al₂O₃ with different Sn loadings along with that of pure SnO₂. All of the Sn-Al₂O₃ samples, except for Sn(1)-Al₂O₃, which did not show any distinct H₂ consumption peaks below 1000 K, showed a similar TPR profile consisting of two well-resolved peaks centered at around 800 and 1100 K and a shoulder peak at ca. 600 K, although the amount of hydrogen uptake is different depending upon the Sn loading. The uptake of hydrogen molecules per Sn atoms is summarized in Table 2. For pure SnO₂, the H₂/Sn ratio is close to the stoichiometry for the reduction of bulk SnO₂ (H₂/Sn = 2), indicating that 98% of bulk SnO₂ can be reduced to Sn metal. As shown in Fig. 5, pure SnO₂ gave a sharp reduction peak centered at ca. 1060 K, indicating that the reduction of Sn^{IV} to Sn⁰ may be kinetically fast at temperatures above 800 K. Interestingly, the H₂/Sn ratio for the reduction of Sn-Al₂O₃ was much smaller than the sto-

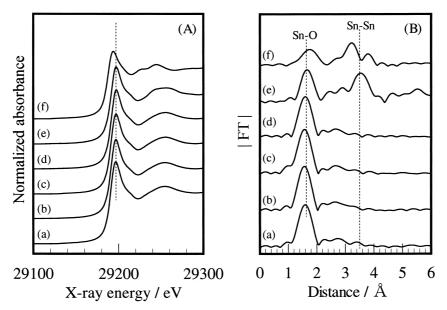


Fig. 4. (A) Sn K-edge XANES spectra and (B) Fourier transforms of EXAFS spectra of (a) Sn(1)–Al₂O₃, (b) Sn(3)–Al₂O₃, (c) Sn(5)–Al₂O₃, (d) Sn(10)–Al₂O₃, (e) SnO₂ and (f) SnO.

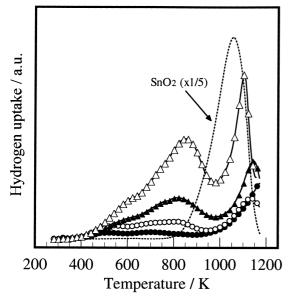


Fig. 5. TRP profiles of Sn-Al₂O₃ with different Sn loading and pure SnO₂.

(\bullet) Sn(1)–Al₂O₃, (\bigcirc) Sn(3)–Al₂O₃, (\blacktriangle) Sn(5)–Al₂O₃, (\triangle) Sn(10)–Al₂O₃, dotted line: SnO₂.

ichiometry (Table 2), whereas the reduction peak at around 1100 K was recognized in their TPR profiles. This is probably because some of oxo-tin species are incorporated into the bulk and strongly interacted with alumina, which is a characteristic of the sol–gel method.

The reduction peaks at around 570 and 850 K observed for $Sn-Al_2O_3$ can be ascribed to a reduction of the surface vicinity of oxo-tin species and the reduction of Sn^{IV} to Sn^{II} , respectively. Auroux et al. 18 reported that easily reducible Sn^{IV} species to Sn^{II} species is an active phase for lean NO_x catalysis. Thus, the ratio of the surface vicinity reduced below 973 K to

Table 2. Summary of TPR Measurements

Catalyst	mol H ₂ /mol Sn ^{a)}	% H ₂ consumption below	
		973 K $(Sn_{(IV \rightarrow II)}/Sn_{(total)})$	
SnO ₂	1.98	0.50 ^{b)}	
$Sn(1)$ – Al_2O_3	0.77	33.8	
$Sn(3)$ – Al_2O_3	0.80	56.3	
$Sn(5)$ – Al_2O_3	0.75	58.6	
$Sn(10)-Al_2O_3$	0.75	64.2	

- a) H_2 uptake detected below 1173 K was divided by the total Sn content.
- b) The ratio of H_2 uptake below 673 K to that below 1173 K.

the total oxo-tin species reduced below 1173 K $(Sn_{(IV \rightarrow II)}/Sn_{(total)})$ was calculated. As given in Table 2, no correlation between the catalytic activity and the $Sn_{(IV \rightarrow II)}/Sn_{(total)}$ ratio was observed. This is probably because not only oxo-tin species, but also alumina, participate in the reaction as catalytically active sites.

3. Effect of H₂O Treatment. Kung et al. 15,16 reported that the catalytic activity of Sn/Al₂O₃ was improved by 5–20% after a pretreatment in the reaction gases (NO + $C_3H_6 + O_2 +$ H₂O) at 873 K, although they have not revealed the reasons. It was also reported that the presence of H2O considerably enhanced the activity of tin-containing catalysts, such as Sn-ZSM-5 + MnO_2^{25} and SnO_2 – Ga_2O_3 – Al_2O_3 , ²⁶ for NO reduction. These reports indicate that coexisting H₂O often affects the catalytic performance of tin-containing catalysts. Accordingly, the catalytic activity of Sn-Al₂O₃ for NO reduction in the absence of H₂O was evaluated before and after an H₂O treatment in flowing 9.1% H₂O/He at 873 K for 3 h. The results are shown in Fig. 6. It appears that the catalytic activity of Al₂O₃ was not affected by the H₂O treatment at all. On the contrary, the H₂O treatment caused an enhancement of the NO reduction activity of Sn-Al₂O₃ in the entire temperature range

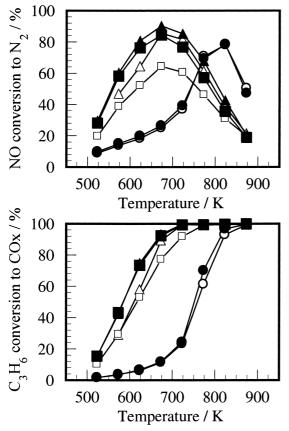


Fig. 6. Effect of H_2O treatment on the catalytic activity of Al_2O_3 (\bigcirc, \bullet) , $Sn(5)-Al_2O_3$ $(\triangle, \blacktriangle)$ and $Sn(10)-Al_2O_3$ (\square, \blacksquare) for NO reduction by propene in the absence of H_2O . Conditions: NO = 880 ppm, C_3H_6 = 950 ppm, O_2 = 9.3%, H_2O = 0%, W/F = 0.18 gs cm⁻³. Open symbols $(\bigcirc, \triangle, \square)$ are the results of fresh catalysts and closed ones $(\bullet, \blacktriangle, \blacksquare)$ are of H_2O -treated catalysts.

irrespective of Sn loading. Particularly, a remarkable activity enhancement was observed for Sn(10)– Al_2O_3 . Since C_3H_6 conversion was also increased, H_2O treatment may alter the Sn species as catalytically active sites.

The physical properties of the H_2O -treated $Sn-Al_2O_3$ are summarized in Table 3. It can be seen by comparing Tables 1 and 3 that the H_2O treatment did not change the BET surface area of $Sn-Al_2O_3$, but decreased the concentration of Cl^- ions by about 30%. This suggests that tin chloride remaining after the calcination at 873 K may be hydrolyzed to tin oxide during the H_2O treatment. The fact that no great difference in the XRD spectra was observed between the fresh and the H_2O -treated $Sn-Al_2O_3$ (results not shown) indicates that the H_2O treatment does not affect the crystal structure of the catalysts and the dispersion state of the Sn species.

Figure 7 shows the TPR profiles of the fresh and the H_2O -treated $Sn-Al_2O_3$. It appears that the H_2/Sn ratio calculated from the total H_2 uptake below 1173 K was increased by the H_2O treatment (Table 3), meaning an increase of reducible oxo-tin species. From these results, the activity enhancement caused by the H_2O treatment can be attributed to the following two reasons: (i) increase of the surface concentration of oxo-tin species and (ii) modification of oxo-tin species as active

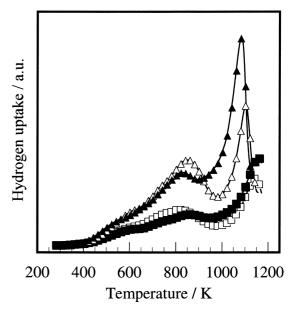


Fig. 7. Effect of H_2O treatment on the TPR profiles of Sn(5)— Al_2O_3 (\square, \blacksquare) and Sn(10)— Al_2O_3 ($\triangle, \blacktriangle$). Open symbols (\square, \triangle) are the results of fresh catalysts and closed ones ($\blacksquare, \blacktriangle$) are of H_2O -treated catalysts.

sites accompanied by the removal of Cl⁻ ions.

4. Kinetic Studies of NO Reduction by Propene over Sn-Al₂O₃. The kinetic parameters and the activation energies for N₂ and CO_x formation over fresh and H₂O-treated Sn(5)–Al₂O₃ are summarized in Table 4, where the former was determined from ln-ln plots of the rate against the partial pressure of NO, C₃H₆ or O₂ and the latter from the Arhenius plots. A good linear correlation was observed within the experimental errors. As given in Table 4, the activation energy for N₂ and CO_x formation decreased by about 70% after H₂O treatment. This may be due to the modification of the catalytically active sites described above. However, a significant difference in the reaction orders with respect to NO, C₃H₆ and O₂ for N₂ and CO_r formation was not observed between the fresh and the H₂O-treated catalysts. This leads us to deduce that the H₂O treatment does not affect the reaction steps for activation of the reaction gases.

As can be seen in Table 4, the reaction order with respect to NO for N_2 formation was less than unity, indicating the presence of NO_x adspecies on the catalyst surface, mainly on Al_2O_3 . In agreement with the literature, $^{27-29}$ NO_x adspecies may behave as an intermediate for N_2 formation. The formation of NO_x adspecies by the reaction of $NO + O_2$ was evidenced by NO_x -TPD measurements (results not shown). On the other hand, NO_x adspecies seem to inhibit C_3H_6 oxidation to intermediates (abbreviated as C_3H_6 -derived species) and/or CO_x , because the reaction order with respect to NO for CO_x formation was -0.3 (Table 4). Probably, NO_x adspecies and C_3H_6 -derived species compete on the same adsorption sites.

Recently, we conducted kinetic studies for NO reduction by propene over Al_2O_3 to determine the kinetic parameters, and found that the reaction orders with respect to NO, C_3H_6 , and O_2 for N_2 formation were 0.3, 0.3, and 0.6, respectively.³⁰ Apparently, the reaction orders on Al_2O_3 are almost the same as

RFT curface Elemental analysis TPRc)

Table 3. Characteristics of H₂O-Treated Sn-Al₂O₃^{a)}

Catalyst	BET Surface	Elemental analysis		IFK
	area/m 2 g $^{-1}$	Sn/Al ^{b)}	Cl/Al	mol H ₂ /mol Sn
Al_2O_3	154	na	na	na
$Sn(5)$ – Al_2O_3	221	$0.021\ (0.023^{b)})$	0.003	0.80
Sn(10)–Al ₂ O ₃	248	na	na	0.85

- a) Conditions for H_2O treatment: $H_2O = 9.1\%$, temperature = 873 K, treatment time = 3 h.
- b) In parentheses are given calculated atomic ratio.
- c) TPR profiles are shown in Fig. 7.

Table 4. Kinetic Parameters of the Selective Reduction of NO with Propene over Sn(5)-Al₂O₃ at 623 K

Catalyst	Product	Reaction order ^{a)} with respect to			Activation energy ^{b)}
		NO	C ₃ H ₆	O_2	/kJ mol ⁻¹
Fresh Sn(5)–Al ₂ O ₃	N_2	0.3	0.4	0.7	43
	CO_x	-0.3	0.7	0.7	49
H ₂ O-treated Sn(5)–Al ₂ O ₃	N_2	0.2	0.5	0.8	30
	CO_x	-0.3	0.8	0.5	35

- a) Conditions: NO = 180–1500 ppm, $C_3H_6 = 150-1900$ ppm, $O_2 = 2-15\%$, temperature = 623 K, gas flow rate = $66 \text{ cm}^3 \text{ min}^{-1}$, catalyst weight = 0.03-0.1 g.
- b) Activation energies were calculated by varing the temperatures from 623 to 723 K under the following reaction conditions: NO = 880 ppm, $C_3H_6 = 950$ ppm, $O_2 = 9.3\%$, $H_2O = 0\%$, gas flow rate $= 66 \text{ cm}^3 \text{ min}^{-1}$.

those on Sn-Al₂O₃. On the other hand, the addition of SnO₂ into Al₂O₃ caused a decrease in the activation energy for N₂ formation, from 85 to 43 kJ mol⁻¹. These results suggest that the supported-SnO₂ promotes important reaction steps for N₂ formation on Al₂O₃ sites. A similar bifunctional effect of SnO₂ and Al₂O₃ has been reported by Yezerets et al.³¹ They revealed that SnO₂ promotes the activation of C₃H₆ to form oxygenated intermediates, which subsequently react with NO_x on Al₂O₃ to yield N₂. In the present work, the role of supported-SnO₂ may be to activate C₃H₆ to intermediates, because the conversion of C₃H₆ on Sn-Al₂O₃ was similar to that on SnO₂, but much higher than that on Al₂O₃ (Figs. 1 and 2). The subsequent reactions of C₃H₆-derived intermediates and NO_x adspecies, leading to the formation of N₂, would proceed on Al₂O₃.

Conclusions

The following conclusions were obtained in the present work:

- (1)Sn-Al₂O₃ prepared by the sol-gel method exhibited high catalytic activity for NO reduction by propene, compared with Al₂O₃ and SnO₂. The maximum NO conversion did not change much in the range of Sn loading of 1 and 5 wt%.
- (2)Structural characterizations confirmed the presence of finely dispersed SnO₂ crystallites. Not only the surface of suppored-SnO₂, but also Al₂O₃, were suggested to behave as active sites. The role of suppored-SnO₂ was considered to activate C₃H₆ to intermediates, the subsequent reaction steps leading to N_2 formation to proceed on Al_2O_3 .
- (3)An H₂O treatment of Sn-Al₂O₃ caused a remarkable enhancement of the NO reduction activity. This promotional effect was interpreted by an increase of the surface SnO2 concentration and a modification of the oxo-tin species as catalytically active sites, but not by a change of the reaction pathway.

We would like to express our sincere thanks to Mr. Kazuhito Sato of Cosmo Research Institute for his assistance in ICP analysis.

References

- 1 M. Shelef, Chem. Rev., 95, 209 (1995).
- 2 M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u, and N. Mizuno, Appl. Catal., 69, L15 (1991).
- 3 W. Held, A. Koenig, T. Richter, and L. Puppe, SAE Paper, 1990, 900496.
 - 4 Ger. Offen. DE 3,642,018 (1987) to Volkswagen A.G.
 - Ger. Offen. DE 3,735,151 (1988) to Toyota Co.
 - C. Yokoyama and M. Misono, *J. Catal.*, **150**, 9 (1994).
 - Y. Li and J. N. Armor, *Appl. Catal. B*, **2**, 239 (1993).
 - E. Kikuchi and K. Yogo, *Catal. Today*, **22**, 73 (1996).
- R. A. Grinstedt, H.-W. Jen, C. N. Montreuil, M. J. Rokosz, and M. Shelef, Zeolites, 13, 602 (1993).
 - 10 H. Hamada, Catal. Today, 22, 21 (1994).
 - M. C. Kung and H. H. Kung, *Top. Catal.*, **10**, 21 (2000).
- Y. Kintaichi, H. Hamada, M. Tabata, M. Sasaki, and T. Ito, Catal. Lett., 6, 239 (1990).
- 13 Y. Teraoka, T. Harada, T. Iwasaki, T. Ikeda, and S. Kagawa, Chem. Lett., 1993, 773.
- 14 M. Tabata, H. Hamada, F. Suganuma, T. Yoshinari, H. Tsuchida, Y. Kintaichi, M. Sasaki, and T. Ito, Catal. Lett., 25, 55 (1994).
- 15 M. C. Kung, P. W. Park, D.-W. Kim, and H. H. Kung, J. Catal., 181, 1 (1999).
- 16 P. W. Park, H. H. Kung, D.-W. Kim, and M. C. Kung, J. Catal., 184, 440 (1999).
- 17 J. Ma, Y. Zhu, J. Wei, X. Cai, and Y. Xie, Stud. Surf. Sci. Catal., 130, 617 (2000).
- 18 A. Auroux, D. Sprinceana, and A. Gervasini, J. Catal., 195,

140 (2000).

- 19 A. Ueno, H. Suzuki, and Y. Kotera, *J. Chem. Soc., Faraday Trans.* 1, **79**, 127 (1983).
- 20 M. Haneda, T. Mizushima, B. Kakuta, A. Ueno, Y. Sato, S. Matsuura, K. Kasahara, and M. Sato, *Bull. Chem. Soc. Jpn.*, **66**, 1279 (1993).
- 21 Y. Kintaichi, M. Haneda, M. Inaba, and H. Hamada, *Catal. Lett.*, **48**, 121 (1997).
- 22 A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, *Acta Crystallogr.*, **B53**, 373 (1997).
- 23 K. Ishiguro, T. Ishikawa, N. Kakuta, A. Ueno, Y. Mitarai, and T. Kamo, *J. Catal.*, **123**, 523 (1990).
- 24 T. Ishikawa, R. Ohashi, H. Nakabayashi, N. Kakuta, A. Ueno, and A. Furuta, *J. Catal.*, **134**, 87 (1992).

- 25 Y. Hirao, C. Yokoyama, and M. Misono, *J. Chem. Soc, Chem. Commun.*, **1996**, 597.
- 26 M. Haneda, Y. Kintaichi, and H. Hamada, *Appl. Catal. B*, **20**, 289 (1999).
- 27 S. Kameoka, Y. Ukisu, and T. Miyadera, *Phys. Chem. Chme. Phys.*, **2**, 367 (2000).
- 28 F. C. Meunier, J. P. Breen, V. Zuzaniuk, M. Olsson, and J. R. H. Ross, *J. Catal.*, **187**, 493 (1999).
- 29 K. Shimizu, H. Kawabata, A. Satsuma, and T. Hattori, *J. Phys. Chem. B*, **103**, 5240 (1999).
- 30 M. Haneda, Y. Kintaichi, H. Shimada, and H. Hamada, *J. Catal.*, **192**, 137 (2000).
- 31 A. Yezerets, Y. Zheng, P. W. Park, M. C. Kung, and H. H. Kung, *Stud. Surf. Sci. Catal.*, **130**, 629 (2000).